Distretto Conciario Toscano

LCA dei prodotti del distretto conciario

Pelle conciata

Cuoio da suola

Sommario

INTRODUZIONE	
1.1 Obiettivi	4
1.2 Metodologia	
1.3 Descrizione del prodotto	4
1.4 Definizione dei confini del sistema	
1.5 Descrizione del processo produttivo:	
1.5.1. Pelle conciata	
1.5.2. Cuoio da suola	7
2.1 Impostazione della raccolta dati	9
2.2 Inventario del ciclo di vita	
2.2.1 Pelle Conciata	
2.2.2 Cuoio da suola	
3.1 Metodo di calcolo	
3.2 Risultati	
3.2.1 Pelle conciata	
3.2.2 Cuoio da suola	
4.1 Confronto con LCA precedente: pelle conciata	17
4.2 Confronto con LCA precedente: cuoio da suola	

INTRODUZIONE

La sempre maggiore consapevolezza circa l'importanza della protezione dell'ambiente ed i possibili impatti dovuti alla produzione di beni e realizzazione di servizi ha accresciuto l'interesse verso lo sviluppo di metodi atti a comprenderli meglio e quindi a ridurli. Una di queste tecniche è la valutazione del ciclo di vita (LCA) regolata dalle norme ISO 14040-14044.

La LCA è una tecnica per valutare gli aspetti ambientali ed i potenziali impatti ambientali associati ad un prodotto o ad un servizio, mediante:

- la compilazione di un inventario degli elementi input ed output di un sistema produttivo;
- la valutazione dei potenziali impatti ambientali associati;
- l'interpretazione dei risultati riguardanti le fasi di analisi dell'inventario e di stima degli impatti in relazione agli obiettivi dello studio;
- Il confronto oggettivo con altri prodotti concorrenti in relazione all'eco-compatibilità del prodotto stesso.

La LCA studia gli aspetti ambientali e gli impatti potenziali durante l'intero ciclo vita del prodotto (cioè dalla culla alla tomba). Quest'ultimo è analizzato ripercorrendo gli impatti connessi col prodotto in ogni fase della sua vita ovvero dalla progettazione passando per l'acquisizione delle materie prime, la fabbricazione, l'utilizzazione ed infine lo smaltimento, includendo in ognuna di queste fasi gli impatti ambientali derivanti dal trasporto.

Le principali categorie di impatto ambientale da tenere in considerazione riguardano l'utilizzo di risorse, la salute dell'uomo ed i potenziali impatti ambientali. La LCA si basa sull'analisi dell'inventario del ciclo di vita, cioè la raccolta e l'analisi dei dati in ingresso ed in uscita, volta a stabilire un riferimento di base delle prestazioni di un dato sistema di prodotti, quantificando l'utilizzo di flussi di energia e materie prime e le emissioni in aria, acqua e nel suolo associati a quel sistema, tanto per l'intero quanto per i singoli processi. Ciò consente l'identificazione delle unità di processo all'interno del sistema di prodotti che generano i maggiori impatti.

Attraverso la LCA è possibile:

- Identificare le opportunità di migliorare gli aspetti ambientali dei prodotti nei diversi stadi del loro ciclo di vita;
- Prendere delle decisioni nell'industria, per esempio di pianificazione strategica, scelta di priorità, progettazione o riprogettazione di prodotti o processi;
- Scegliere indicatori rilevanti di prestazione ambientale con le relative tecniche di misurazione;
- Utilizzare strumenti di green marketing sia per il B2B che per il B2C di cui è la base scientifica oggettiva.

PARTE 1 – INQUADRAMENTO GENERALE

1.1 Objettivi

Il presente studio ha come obiettivo la valutazione delle performance ambientali associate alla produzione della pelle ed alla produzione del cuoio.

Il presente documento costituisce la base della relazione destinata al verificatore esterno accreditato, il quale garantirà la riservatezza sui dati e sui risultati ottenuti.

1.2 Metodologia

Il presente studio di Life Cycle Assessment (LCA) è stato condotto secondo la metodologia Product Environmental Footprint (PEF) così come definita nella Raccomandazione 2013/179/UE della Commissione, del 9 aprile 2013, relativa all'uso di metodologie comuni per misurare e comunicare le prestazioni ambientali dei flussi di materia/energia in ingresso, delle emissioni prodotte e dei flussi di rifiuti in uscita associati al ciclo di vita di uno specifico bene o servizio.

L'analisi del ciclo di vita, così come previsto dalla metodologia PEF, si è articolata nelle seguenti quattro fasi:

- a) definizione dell'obiettivo e del campo di applicazione;
- b) analisi del profilo di utilizzo delle risorse ed emissioni: inventario dei dati in ingresso e in uscita relativi alle diverse fasi del ciclo di vita del prodotto.
- c) la fase di valutazione dell'impatto del ciclo di vita: i risultati dell'inventario sono stati espressi utilizzando gli indicatori previsti dalle linee guida PEF.
- d) la fase di interpretazione: i risultati sono riepilogati e discussi, in conformità con la definizione dell'obiettivo e del campo di applicazione, come base per conclusioni, raccomandazioni e decisioni.

Il calcolo delle performance ambientali associate alla produzione della pelle e del cuoio è stato condotto inoltre secondo le regole definite dalla versione finale (aprile 2018) del documento Product Environmental Footprint Category Rules (PEFCR) definito nell'ambito del progetto pilota sulla pelle condotto per verificare l'applicazione della metodologia PEF e in particolare per istituire e convalidare il processo di sviluppo delle norme specifiche per categorie di prodotti (PEFCR), per testare una serie di sistemi di controllo della conformità e di verifica degli studi PEF e per sperimentare approcci diversi per le comunicazioni dalle aziende ai consumatori e tra le aziende stesse.

Il software utilizzato per il calcolo delle performance ambientali dei prodotti oggetto di studio è Simapro 9.2

1.3 Descrizione del prodotto

Lo studio LCA ha per oggetto la produzione di pelle e cuoio nel distretto conciario toscano.

Lo studio LCA non si riferisce ad una singola azienda, ma mira a confezionare uno studio medio per le produzioni sopracitate in modo da rappresentare i prodotti medi di Distretto per la pelle e per il cuoio da suola e si inserisce nell'ottica di uno studio distrettuale più ampio legato agli aspetti/impatti ambientali connessi con le due produzioni in un'area spaziale limitata.

Unità funzionale

Le unità funzionali del presente studio, che rappresentano le 2 tipologie di prodotti prese in analisi, sono:

- 1 m² di pelle conciata
- 1 kg di cuoio da suola.

L'unità funzionale si basa sulla produzione nell'anno di riferimento 2021 e rappresenta l'unità di riferimento di tutti i risultati della presente dichiarazione.

1.4 Definizione dei confini del sistema

I confini del sistema comprendono tutte le fasi che, dall'approvvigionamento delle materie prime, conducono alla produzione di 1 m² di pelle conciata e di 1 kg cuoio da suola.

Una pelle grezza potrebbe essere considerata come un rifiuto derivante dalla macellazione, interpretando i processi di lavorazione in conceria come un recupero di un rifiuto. Seguendo l'approccio conservativo che viene richiesto dalle PEFCR di riferimento, in questo studio la pelle grezza viene considerata come un coprodotto dell'allevamento, e si assume quindi parte (le percentuali di allocazione sono definite nel documento PEFCR) dell'impatto ambientale legato a questa fase.

In particolare, il sistema comprende le seguenti fasi del ciclo di vita:

- la fase di produzione e il trasporto dell'animale agli impianti di macellazione;
- la fase di macellazione e la fase di preparazione delle pelli;
- il trasporto delle pelli alle aziende del distretto conciario;
- la fase di produzione della pelle conciata e del cuoio da suola;

È esclusa dal sistema la fase di distribuzione del prodotto finito e la fase d'uso. All'interno dei confini del sistema sono compresi anche i processi di smaltimento e recupero dei rifiuti e il trattamento delle acque reflue provenienti dal processo.

1.5 Descrizione del processo produttivo:

1.5.1. Pelle conciata

Il processo produttivo della concia viene suddiviso comunemente fra fasi appartenenti ai reparti ad umido e fasi appartenenti ai reparti di rifinizione.

Le prime fasi appartengono ai reparti ad umido e sono:

- 1. Ricevimento Pelle: la pelle grezza che arriva in azienda è stata trattata in modo tale da impedire la putrefazione durante il trasporto;
- 2. Stoccaggio Pelle: le pelli grezze, giunte in azienda sono stoccate in magazzini freschi e ventilati o dotati di celle frigorifero che, garantiscono un livello di temperatura tale da impedire la proliferazione batterica;
- 3. Rifilatura: la rifilatura consiste nell'eliminare dalla pelle grezza le parti non utili alla lavorazione (coda, ginocchia, etc.).
- 4. Rinverdimento: ha l'obiettivo di reidratare la pelle dopo che a seguito della salatura ha perso il suo naturale contenuto di umidità, inoltre si eliminano le impurità costituite da sangue, sterco e altro materiale estraneo;
- 5. Calcinazione Depilazione: la depilazione ha lo scopo di solubilizzare l'epidermide e il pelo in modo da poterli separare facilmente dal derma. Al contrario nella calcinazione vengono modificate le fibre dermiche, in modo da prepararle a ricevere le sostanze concianti;
- 6. Scarnatura ed eventuale Spaccatura in Trippa: la scarnatura ha l'obiettivo di eliminare i resti del tessuto sottocutaneo (carniccio) dal lato interno (carne) delle pelli. La spaccatura in trippa invece divide la pelle in due sezioni: una parte superiore più pregiata (fiore) ed una parte inferiore (crosta) poi destinata a lavorazioni e usi diversi;

- 7. Purga (Decalcinazione Macerazione): in questa fase la pelle si libera dai prodotti usati durante la calcinazione, si riduce il gonfiamento delle pelli. La macerazione ha lo scopo di rimuovere completamente i residui di cheratine del pelo e dell'epidermide;
- 8. Pickel: Il trattamento di pickel porta il pH delle pelli verso valori acidi (2,5-3,2) necessari per preparare le proteine alle fasi successive di concia. L'intensità con la quale viene svolta questa operazione dipende molto dal tipo di concia che verrà effettuata in seguito e dal tipo di articolo da realizzare;
- 9. Concia: ha lo scopo di stabilizzare irreversibilmente la pelle, che da materiale putrescibile diviene imputrescibile.
 - La concia al vegetale si caratterizza per l'uso di prodotti di origine vegetale quali estratti di castagno, mimosa e quebracho, i quali vengono utilizzati in funzione delle loro caratteristiche e dell'articolo finito che si vuole produrre. Il bagno di concia al vegetale esausto viene convogliato direttamente al depuratore consortile tramite la fognatura industriale. La concia al cromo si effettua nei bottali. I principali prodotti utilizzati nel bottale sono il solfato basico di cromo e i prodotti basificanti. il bagno di concia non viene convogliato in fognatura, ma viene raccolto in appositi contenitori, che vengono inviati al locale Consorzio Recupero Cromo, che tratta il bagno refluo di concia e dopo opportuno trattamento di precipitazione/ridissoluzione e purificazione recupera il cromo residuo e lo restituisce per il riutilizzo alle singole aziende, in proporzione al quantitativo conferito;
- 10. Pressatura: è finalizzata all'eliminazione di buona parte dei liquidi che la pelle ha assorbito durante la concia;
- 11. Spaccatura in Conciato: la spaccatura in conciato divide la pelle in due sezioni: una parte superiore più pregiata (fiore) ed una parte inferiore (crosta) poi destinata a lavorazioni e usi diversi;
- 12. Rasatura: lo spessore della pelle viene uniformato per tutta la sua superficie;
- 13. Riconcia, Neutralizzazione, Tintura, Ingrasso: La neutralizzazione (o disacida) è un'operazione che viene eseguita essenzialmente per ridurre l'acidità libera della pelle conciata. Lo scopo della riconcia è quello di conferire alle pelli la necessaria ed uniforme pienezza e la capacità di conservare la consistenza. La tintura si realizza attraverso un trattamento in botte, di durata variabile a seconda del tipo di tintura utilizzata. Infine, l'ingrasso è realizzato con un trattamento in botte con sostanze grasse di varia natura (vegetale, animale, sintetica) per migliorare le qualità organolettiche delle pelli.

Appartengono ai reparti di rifinizione le seguenti fasi:

- 1. Messa a Vento: la spianatura della pelle, l'operazione viene eseguita con macchine, che in un unico passaggio eseguono sulla pelle tre interventi per eliminare dalla pelle una buona parte dell'acqua.
- 2. Sottovuoto: l'acqua contenuta nelle pelli si trasforma in vapore facilitando una rapida asciugatura delle stesse che vengono così anche stese completamente.
- 3. Essiccazione: eliminare l'umidità residua delle pelli
- 4. Palissonatura: ha lo scopo di ammorbidire la pelle in tutti i suoi punti
- 5. Volanatura: ha lo scopo di ammorbidire la pelle e conferire al fiore una grana particolare.
- 6. Smerigliatura e spolveratura: le pelli possono essere smerigliate dal lato carne per pulire le pelli da residui di tessuto sottocutaneo, o da lato fiore per ottenere il cosiddetto nabuk (con il caratteristico effetto scrivente) o una pelle dal fiore corretto.
- 7. Rifinizione: lo scopo della rifinizione è di migliorare l'aspetto e le caratteristiche prestazionali (resistenza all'acqua, allo sporco, al graffio, ecc.) del pellame.
- 8. Rifilatura, Misurazione, Imballo e Spedizione: concluse le fasi di lavorazione le pelli arrivano al magazzino spedizione dove vengono selezionate, rifilate, misurate, imballate e spedite. La rifilatura o

sforbiciatura consiste nell'eliminazione della pelle di inestetismi marginali, quali brandelli o sformature.

I reflui acquosi provenienti dalle varie fasi della concia, sia per la concia vegetale che per la concia al cromo, sono inviate ai depuratori consortili della zona per essere trattate con processi di tipo chimico-fisico e biologico.

1.5.2. Cuoio da suola

Il processo produttivo della concia viene suddiviso comunemente fra fasi appartenenti ai reparti ad umido e fasi appartenenti ai reparti di rifinizione.

Le prime fasi appartengono ai reparti ad umido e sono:

- 1. Ricevimento Pelle: la pelle grezza che arriva in azienda è stata trattata in modo tale da impedire la putrefazione durante il trasporto
- 2. Stoccaggio Pelle: le pelli grezze, giunte in azienda sono stoccate in magazzini freschi e ventilati o dotati di celle frigorifero che, garantiscono un livello di temperatura tale da impedire la proliferazione batterica;
- 3. Sezionatura e Rifilatura: con la sezionatura o sagomatura, si divide la pelle in sezioni per ricavarne il groppone, ossia la parte centrale utilizzata nel processo produttivo. Le sezioni laterali (spalle e fianchi), denominati commercialmente "frassame", vengono utilizzate per la produzione di pelle per tomaia, pelletteria ecc. La rifilatura invece consiste nell'eliminare dalla pelle grezza le parti non utili alla lavorazione (coda, ginocchia, ecc.);
- 4. Rinverdimento: ha l'obiettivo di reidratare la pelle dopo che a seguito della salatura ha perso il suo naturale contenuto di umidità, inoltre si eliminano le impurità costituite da sangue, sterco e altro materiale estraneo;
- 5. Calcinazione Depilazione: la depilazione ha lo scopo di solubilizzare l'epidermide e il pelo in modo da poterli separare facilmente dal derma. Al contrario nella calcinazione vengono modificate le fibre dermiche, in modo da prepararle a ricevere le sostanze concianti;
- 6. Scarnatura ed eventuale Spaccatura in Trippa: la scarnatura ha l'obiettivo di eliminare i resti del tessuto sottocutaneo (carniccio) dal lato interno (carne) delle pelli. La spaccatura in trippa invece divide la pelle in due sezioni: una parte superiore più pregiata (fiore) ed una parte inferiore (crosta) poi destinata a lavorazioni e usi diversi;
- 7. Purga (Decalcinazione Macerazione): in questa fase la pelle si libera dai prodotti usati durante la calcinazione, si riduce il gonfiamento delle pelli. La macerazione ha lo scopo di rimuovere completamente i residui di cheratine del pelo e dell'epidermide;
- 8. Preconcia in bottale: l'obiettivo di favorire la successiva penetrazione dei tannini vegetali utilizzati durante la concia vera e propria.
- 9. Concia in vasca e bottale: consiste nell'impregnare la pelle di sostanze che ne impediscono la putrefazione senza alterarne la morbidezza, la flessibilità e la struttura fibrosa originaria. La concia del cuoio da suola è detta al vegetale in quanto gli agenti concianti sono costituiti dai tannini naturali derivati dalla estrazione di sostanze vegetali.
- 10. Pressatura: finalizzata all'eliminazione di buona parte dei liquidi che la pelle ha assorbito durante la concia, per facilitare l'esecuzione delle operazioni meccaniche successive che non possono essere effettuate se la pelle è bagnata.
- 11. Rasatura: per garantirle uno spessore uniforme su tutta la superficie
- 12. Riconcia: conferire alle pelli la necessaria ed uniforme pienezza e la capacità di conservare la consistenza anche dopo processi di essiccazione che tendono a schiacciare il pellame riducendone lo spessore.

Appartengono ai reparti di rifinizione le seguenti fasi:

- 1. Ripianatura: le pelli vengono distese e si compatta la struttura fibrosa.
- 2. Essiccazione: ha lo scopo di eliminare gran parte dell'acqua che è contenuta nelle pelli
- 3. Cilindratura: impartisce fermezza, e rende la superficie levigata e di un lucido gradevole e uniforme;
- 4. Rifinizione: Lo scopo della rifinizione è di migliorare l'aspetto e le caratteristiche prestazionali (resistenza all'acqua, allo sporco, al graffio, ecc.) del cuoio.
- 5. Rifilatura, Pesatura, Imballo e Spedizione: Il cuoio viene "rifilato" ai margini per togliere inestetismi eventuali. In seguito, il cuoio viene pesato, imballato e spedito a destinazione.

I reflui acquosi provenienti dalle varie fasi della concia sono inviate ai depuratori consortili della zona per essere trattate con processi di tipo chimico-fisico e biologico.

PARTE 2 – RACCOLTA DATI

2.1 Impostazione della raccolta dati

Per avere una rappresentazione del prodotto medio di distretto l'analisi è stata preceduta da un'ampia raccolta dati attraverso l'utilizzo dei questionari che sono inizialmente stati utilizzati per una più generale analisi settoriale.

Al fine di individuare e valutare gli aspetti ambientali delle aziende appartenenti al settore conciario e insediate nei quattro comuni del distretto presi in considerazione, è stato costituito un apposito gruppo di lavoro. Obiettivo di tale gruppo è stato quello di calcolare, per ogni aspetto ambientale, indicatori di prestazione ambientale rappresentativi della realtà del Distretto Conciario Toscano.

Per ottenere i dati di input, rappresentativi del processo produttivo del distretto, è stato inviato un dettagliato questionario a tutte le aziende associate all'Associazione Conciatori di Santa Croce ed al Consorzio Conciatori di Ponte a Egola. I dati raccolti sono riferiti all'anno 2021.

Durante la raccolta e l'analisi dei dati è emerso che le aziende produttrici di pelle del distretto, soprattutto di pelle al cromo, non realizzano tutto il processo di concia all'interno dell'azienda, ma alcune partono da semilavorati, per esempio pelle wet-blue, oppure affidano a terzi la realizzazione di alcuni parti del processo, per esempio la rifinizione. In considerazione di questa particolare organizzazione delle aziende si sono elaborati i dati a disposizione per costruire in maniera modulare il modello del processo di concia al cromo e, parzialmente, anche il modello di concia vegetale così da raccogliere i dati per tutte le fasi del processo dalle diverse aziende, senza sottostimare l'uso di reagenti o di energia nei diversi processi.

Il campione analizzato è stato ritenuto ampiamente rappresentativo della realtà produttiva conciaria distrettuale nel suo complesso.

I dati raccolti mediante gli appositi strumenti sono normalizzati in ogni operazione rispetto alla singola unità funzionale (1 m² per la pelle e 1 kg per il cuoio).

2.2 Inventario del ciclo di vita

Nella compilazione dell'inventario sono stati utilizzati dati primari per tutti i processi di concia, per la depurazione dei reflui acquosi provenienti dalla concia, per i trasporti e per la produzione di tannini vegetali. Gli altri dati sono stati ricavati da banche dati (Ecoinvent v.3) e da studi di letteratura (questo è il caso dei prodotti enzimatici; Cradle-to-Gate Environmental Assessment of Enzyme Products Produced Industrially in Denmark by Novozymes A/S; Per H. Nielsen et al.; Int J LCA 2006).

I dati per la produzione di tannini vegetali sono stati ricavati dalla Dichiarazione Ambientale di Alce S.p.A., ditta produttrice di tannini vegetali a partire da legno di castagno e sono relativi agli anni 2010-2011.

I dati di inventario (aggiornati al 2018) per la modellazione del depuratore consortile delle acque reflue sono stati gentilmente forniti dai depuratori consortili del distretto. Come dati di inventario sono stati forniti i consumi energetici, consumi di reagenti, quantità d'acqua depurata e qualità delle acque in entrata e in uscita dal depuratore.

Come specificato precedentemente, i dati dei consumi materiali ed energetici e delle emissioni e dei rifiuti per il processo di concia sono stati forniti dalle singole concerie tramite questionario relativo alla produzione effettuata nell'anno 2021. Oltre ai consumi e ai rifiuti, le singole aziende hanno anche

comunicato il luogo di provenienza, la quantità della materia grezza e il mezzo di trasporto per l'arrivo di pelle grezza allo stabilimento, per cui è stato possibile modellare con dati primari anche il trasporto della pelle grezza dal sito di produzione alla conceria.

2.2.1 Pelle Conciata

Upstream Processes	Unità di Misura / m² pelle	Valore	Categoria
Pelle Grezza	kg	5,74	MATERIE PRIME
Trasporto - Camion	tkm	6,04	TRASPORTO
Trasporto - Nave	tkm	28,73	TRASPORTO
Trasporto - Treno	tkm	0,17	TRASPORTO
Carta & Cartone	g	28,17	PACKAGING
Legno	g	33,03	PACKAGING
Plastica	g	11,76	PACKAGING
Core Processes	Unità di Misura / m² pelle	Valore	Categoria
Acqua da Acquedotto	I	17,89	RISORSE NATURALI
Acqua di Falda	I	141,04	RISORSE NATURALI
Acqua per chimici	g	251,34	RISORSE NATURALI
Energia Elettrica	MJ	20,34	ENERGIA
Diesel	cm ³	45,10	ENERGIA
Metano	I	889,59	ENERGIA
Tensioattivi	g	36,92	CHEMICALS
Tannini vegetali	g	130,20	CHEMICALS
Tannini Sintetici	g	159,85	CHEMICALS
Tannini sintetici	g	8,23	CHEMICALS
Tannini minerali	g	2,63	CHEMICALS
Solventi organici	g	7,44	CHEMICALS
Solfuro di sodio	g	100,07	CHEMICALS
Solfidrato di sodio	g	4,90	CHEMICALS
Solfato di ammonio	g	20,94	CHEMICALS
Soda solvay	g	17,46	CHEMICALS
Sgrassante	g	0,665	CHEMICALS
Sali di Cromo	g	85,44	CHEMICALS
Sali di alluminio	g	1,41	CHEMICALS
Reticolanti	g	0,685	CHEMICALS
Resine	g	125,90	CHEMICALS

Polifosfato di sodio	g	11,88	CHEMICALS
Pigmenti	g	24,22	CHEMICALS
Ossido di magnesio	g	1,62	CHEMICALS
Lacche	g	4,52	CHEMICALS
Iposolfito di sodio (Tiosolfato di			CHEMICALS
sodio)	g	2,50	
Ipoclorito di sodio	g	1,48	CHEMICALS
Ingrassanti	g	321,07	CHEMICALS
Impregnanti - Distendenti	g	22,15	CHEMICALS
Idrossido di sodio (soda caustica)	g	32,14	CHEMICALS
Idrosolfito di sodio	g	0,134	CHEMICALS
Formiato di sodio	g	14,68	CHEMICALS
Formiato di calcio	g	1,09	CHEMICALS
Filler organici	g	128,50	CHEMICALS
Filler inorganici	g	9,28	CHEMICALS
Enzimi	g	37,58	CHEMICALS
Decalcinanti organici	g	2,87	CHEMICALS
Coloranti di botte rifinizione	g	108,33	CHEMICALS
Colorante Base Solvente	g	19,23	CHEMICALS
Colorante Base Acqua	g	18,89	CHEMICALS
Cloruro di sodio	g	108,51	CHEMICALS
Cloruro di ammonio	g	8,13	CHEMICALS
Clorito di sodio	g	6,42	CHEMICALS
Cere	g	10,89	CHEMICALS
Calce	g	178,94	CHEMICALS
Bisolfito di sodio	g	10,31	CHEMICALS
Bicarbonato di sodio	g	21,53	CHEMICALS
Bicarbonato di ammonio	g	1,14	CHEMICALS
Antischiuma	g	0,291	CHEMICALS
Antiruga	g	23,17	CHEMICALS
Antimuffa	g	12,79	CHEMICALS
Ammoniaca	g	0,204	CHEMICALS
Acido solforico	g	35,41	CHEMICALS
Acido ossalico	g	12,29	CHEMICALS
Acido formico	g	139,72	CHEMICALS
Acido acetico	g	3,97	CHEMICALS
Acetato di sodio	g	4,49	CHEMICALS
SOx air	g	0,653	EMISSIONI IN ATMOSFERA
Polveri air	g	0,569	EMISSIONI IN ATMOSFERA
NOx air	g	0,417	EMISSIONI IN ATMOSFERA

H2S air	g	0,0052	EMISSIONI IN ATMOSFERA
COV air	g	51,10	EMISSIONI IN ATMOSFERA
COT air	g	114,97	EMISSIONI IN ATMOSFERA
CO2 air	g	161,71	EMISSIONI IN ATMOSFERA
CO air	g	0,036	EMISSIONI IN ATMOSFERA
Carniccio	g	1480	RIFIUTI
200304_Smaltimento	g	1,36	RIFIUTI
200121_Recupero	g	0,0028	RIFIUTI
170904_Recupero	g	0,167	RIFIUTI
170411_Recupero	g	0,0141	RIFIUTI
170405_Recupero	g	10,22	RIFIUTI
170405_Recupero Cromo	g	0,009	RIFIUTI
160213*_Smaltimento	g	0,027	RIFIUTI
150202*_Smaltimento	g	0,229	RIFIUTI
150110*_Smaltimento	g	3,21	RIFIUTI
150110*_Recupero	g	69,10	RIFIUTI
150106_Smaltimento	g	0,789	RIFIUTI
150106_Recupero	g	21,19	RIFIUTI
150104_Recupero	g	0,509	RIFIUTI
150103_Smaltimento	g	1,13	RIFIUTI
150103_Recupero	g	90,13	RIFIUTI
150102_Recupero	g	15,39	RIFIUTI
150101_Recupero	g	0,798	RIFIUTI
140603*_Recupero	g	3,53	RIFIUTI
130208*_Recupero	g	0,042	RIFIUTI
120112*_Smaltimento	g	0,011	RIFIUTI
080319_Recupero	g	0,024	RIFIUTI
080117*_Smaltimento	g	0,767	RIFIUTI
080111*_Smaltimento	g	12,28	RIFIUTI
040199_Smaltimento	g	110,14	RIFIUTI
040199_Recupero	g	191,49	RIFIUTI
040109_Smaltimento	g	1,27	RIFIUTI
040109_Recupero	g	59,86	RIFIUTI
040108_Recupero	g	770,53	RIFIUTI
040107_Smaltimento	g	109,11	RIFIUTI
040107_Recupero	g	21,36	RIFIUTI
040106_Smaltimento	g	54,37	RIFIUTI
040106_Recupero	g	21,72	RIFIUTI
040104_Recupero	g	2700	RIFIUTI

2.2.2 Cuoio da suola

Upstream Processes	Unità di Misura / kg cuoio	Valore	Categoria
Pelle Grezza	kg	1,39	MATERIE PRIME
Trasporto - Camion	tkm	1,86	TRASPORTO
Carta & Cartone	g	2,671	PACKAGING
Legno	g	34,59	PACKAGING
Plastica	g	8,30	PACKAGING
Reggette in ferro	g	0,084	PACKAGING

Core Processes	Unità di Misura / m² cuoio	Valore	Categoria
Acqua di Falda	I	17,03	RISORSE NATURALI
Acqua da acquedotto	I	0,031	RISORSE NATURALI
Acqua per chimici	g	28,94	RISORSE NATURALI
Energia Elettrica	MJ	2,60	ENERGIA
Gasolio	cm ³	2,55	ENERGIA
Metano	I	114,48	ENERGIA
Tensioattivi	g	1,46	CHEMICALS
Tannini vegetali	g	504,51	CHEMICALS
Tannini sintetici	g	3,01	CHEMICALS
Solventi organici	g	11,09	CHEMICALS
Solfuro di sodio	g	55,96	CHEMICALS
Solfato di magnesio	g	15,39	CHEMICALS
Solfato di ammonio	g	2,39	CHEMICALS
Reticolanti	g	0,405	CHEMICALS
Resine	g	12,46	CHEMICALS
Pigmenti	g	1,61	CHEMICALS
Ossido di magnesio	g	0,598	CHEMICALS
Lacche	g	0,330	CHEMICALS
Ingrassanti	g	3,94	CHEMICALS
Impregnanti - Distendenti	g	0,359	CHEMICALS
Idrossido di sodio (soda caustica)	g	0,361	CHEMICALS
Idrosolfito di sodio	g	0,109	CHEMICALS
Formiato di sodio	g	0,141	CHEMICALS
Filler inorganici	g	1,51	CHEMICALS
Enzimi	g	4,41	CHEMICALS

Coloranti di botte	g	4,92	CHEMICALS
Colorante Base Solvente	g	3,86	CHEMICALS
Colorante Base Acqua	g	2,88	CHEMICALS
Cloruro di ammonio	g	2,30	CHEMICALS
Cere	g	5,90	CHEMICALS
Calce	g	66,35	CHEMICALS
Bisolfito di sodio	g	22,14	CHEMICALS
Antiruga	g	1,03	CHEMICALS
Antimuffa	g	6,75	CHEMICALS
Acido solforico	g	9,21	CHEMICALS
Acido ossalico	g	2,80	CHEMICALS
Acido formico	g	16,90	CHEMICALS
COV, air	g	2,83	EMISSIONI IN ATMOSFERA
Solidi sospesi, air	g	0,040	EMISSIONI IN ATMOSFERA
Particolato, air	g	0,011	EMISSIONI IN ATMOSFERA
Carniccio	g	337,42	RIFIUTI
200121_Recupero	g	0,015	RIFIUTI
170904_Recupero	g	2,06	RIFIUTI
170405_Recupero	g	10,60	RIFIUTI
160213*_Smaltimento	g	0,009	RIFIUTI
150110*_Recupero	g	2,07	RIFIUTI
150106_Smaltimento	g	2,28	RIFIUTI
150103_Recupero	g	25,02	RIFIUTI
150102_Recupero	g	0,591	RIFIUTI
140603*_Recupero	g	2,71	RIFIUTI
080319_Recupero	g	0,009	RIFIUTI
080117*_Smaltimento	g	0,171	RIFIUTI
040199_Smaltimento	g	0,082	RIFIUTI
040199_Recupero	g	0,211	RIFIUTI
040109_Smaltimento	g	9,36	RIFIUTI
040109_Recupero	g	56,95	RIFIUTI
040108_Recupero	g	1,67	RIFIUTI
040107_Smaltimento	g	6,44	RIFIUTI

PARTE 3 – RISULTATI

3.1 Metodo di calcolo

Il software utilizzato per l'elaborazione dei risultati dell'Inventario è SimaPro 9.2 che opera secondo una metodologia caratterizzata dall'impostazione di processi singoli concatenati tra di loro in modo da riprodurre la filiera del sistema produttivo in esame. Le singole operazioni, in tal modo, costituiscono dei sottosistemi il cui impatto può essere studiato separatamente da quello dell'intero sistema. Tale flessibilità permette le simulazioni necessarie per gli studi di sensitività e per ipotizzare miglioramenti dei rendimenti del sistema in esame.

Il metodo utilizzato nel calcolo degli impatti è il metodo ILCD 2011 midpoint version 1.10 pubblicato dalla Commissione europea, Centro Comune di Ricerca, nel 2012. Esso supporta il corretto utilizzo dei fattori di caratterizzazione per la valutazione di impatto ambientale, come raccomandato nelle linee guida ILCD, nel documento "Raccomandazioni per la valutazione d'impatto del ciclo di vita nel contesto europeo – sulla base dei modelli e dei fattori per la valutazione di impatto ambientale esistenti (EC-JRC, 2011)".

3.2 Risultati

Di seguito vengono riportate le performance ambientali relative a:

- 1 m² di pelle conciata
- 1 kg di cuoio da suola.

3.2.1 Pelle conciata

Tutti i dati quantitativi di seguito riportati si riferiscono all'unità funzionale scelta per il presente studio LCA, ovvero 1 m² di pelle conciata.

IMPATTI POTENZIALI

Categoria d'impatto	Unità	Totale
Climate change_fossil	kg CO2 eq	33,17
Climate change_bio	kg CO2 eq	15,75
Climate change_land transformation	kg CO2 eq	4,05
Ozone depletion	kg CFC-11 eq	7,84E-06
Human toxicity, non-cancer effects	CTUh	5,73E-05
Human toxicity, cancer effects	CTUh	9,68E-07
Particulate matter	kg PM2.5 eq	0,03
Ionizing radiation HH	kBq U235 eq	2,99
Photochemical ozone formation	kg NMVOC eq	0,16
Acidification	molc H+ eq	0,82
Terrestrial eutrophication	molc N eq	3,38
Freshwater eutrophication	kg P eq	0,01
Marine eutrophication	kg N eq	0,27
Freshwater ecotoxicity	CTUe	388,61
Land use	kg C deficit	196,41

Water resource depletion	m3 water eq	0,08
Mineral, fossil & ren resource depletion	kg Sb eq	4,81E-04

3.2.2 Cuoio da suola

Tutti i dati quantitativi di seguito riportati si riferiscono all'unità funzionale scelta per il presente studio LCA, ovvero 1 kg di cuoio da suola.

IMPATTI POTENZIALI

Categoria d'impatto	Unità	Totale
Climate change_fossil	kg CO2 eq	7,10
Climate change_bio	kg CO2 eq	4,11
Climate change_land transformation	kg CO2 eq	0,97
Ozone depletion	kg CFC-11 eq	7,32E-07
Human toxicity, non-cancer effects	CTUh	1,45E-05
Human toxicity, cancer effects	CTUh	2,89E-07
Particulate matter	kg PM2.5 eq	0,006
Ionizing radiation HH	kBq U235 eq	0,32
Photochemical ozone formation	kg NMVOC eq	0,03
Acidification	molc H+ eq	0,20
Terrestrial eutrophication	molc N eq	0,87
Freshwater eutrophication	kg P eq	1,53E-03
Marine eutrophication	kg N eq	0,07
Freshwater ecotoxicity	CTUe	68,82
Land use	kg C deficit	58,11
Water resource depletion	m3 water eq	0,02
Mineral, fossil & ren resource depletion	kg Sb eq	7,37E-05

PARTE 4 – CONFRONTO CON LCA PRECEDENTE

4.1 Confronto con LCA precedente: pelle conciata

La tabella seguente riporta gli impatti potenziali di 1 m² di pelle conciata negli anni 2019 e 2022 (con dati del 2018 e del 2021) con la differenza percentuale di impatto per ogni categoria.

Si nota che per tutte le categorie d'impatto tranne l'impoverimento dello strato di ozono e l'eutrofizzazione acquatica, i risultati del 2022 sono migliorativi rispetto al 2019.

Categoria d'impatto	Unità	Totale 2019	Totale 2022	Differenza percentuale tra gli impatti
Climate change_fossil	kg CO2 eq	37,37	33,17	-11%
Climate change_bio	kg CO2 eq	18,41	15,75	-14%
Climate change_land transformation	kg CO2 eq	4,50	4,05	-10%
Ozone depletion	kg CFC-11 eq	4,04E-06	7,84E-06	94%
Human toxicity, non-cancer effects	CTUh	6,89E-05	5,73E-05	-17%
Human toxicity, cancer effects	CTUh	2,21E-06	9,68E-07	-56%
Particulate matter	kg PM2.5 eq	0,03	0,03	-2%
Ionizing radiation HH	kBq U235 eq	3,84	2,99	-22%
Photochemical ozone formation	kg NMVOC eq	0,17	0,16	-8%
Acidification	molc H+ eq	0,94	0,82	-13%
Terrestrial eutrophication	molc N eq	3,87	3,38	-13%
Freshwater eutrophication	kg P eq	0,01	0,012	18%
Marine eutrophication	kg N eq	0,31	0,27	-12%
Freshwater ecotoxicity	CTUe	557,29	388,61	-30%
Land use	kg C deficit	225,47	196,41	-13%
Water resource depletion	m3 water eq	0,18	0,08	-56%
Mineral, fossil & ren resource depletion	kg Sb eq	0,01	0,00048	-95%

A livello europeo sono state individuate le seguenti categorie d'impatto ambientale quali maggiormente rilevanti per la pelle: cambiamento climatico, acidificazione, eutrofizzazione terrestre, particolato, consumo idrico e consumo delle risorse fossili.

Questo comporta una maggiore incidenza delle suddette categorie sull'impatto complessivo del prodotto in questione. Variazioni, seppur rilevanti in termini relativi, di altre categorie d'impatto, avranno un'incidenza poco significativa in termini assoluti. A conclusione, è importante sottolineare che le categorie d'impatto relative alla tossicità sono considerate, ad oggi, le meno robuste da un punto di vista scientifico.

4.2 Confronto con LCA precedente: cuoio da suola

La tabella seguente riporta gli impatti potenziali di 1 kg di cuoio da suola negli anni 2019 e 2022 (con dati del 2018 e del 2021) con la differenza percentuale di impatto per ogni categoria.

Si nota che per tutte le categorie d'impatto, ad eccezione della tossicità, la formazione di radiazioni ionizzanti ed eutrofizzazione acquatica, gli impatti del 2022 si sono ridotti rispetto a quelli del 2019.

Categoria d'impatto	Unità	Totale 2019	Totale 2022	Differenza percentuale tra gli impatti
Climate change_fossil	kg CO2 eq	9,48	7,10	-25%
Climate change_bio	kg CO2 eq	4,35	4,11	-5%
Climate change_land transformation	kg CO2 eq	1,05	0,97	-7%
Ozone depletion	kg CFC-11 eq	8,27E-07	7,32E-07	-11%
Human toxicity, non-cancer effects	CTUh	1,46E-05	1,45E-05	-1%
Human toxicity, cancer effects	CTUh	9,89E-08	2,89E-07	192%
Particulate matter	kg PM2.5 eq	0,01	0,006	-42%
Ionizing radiation HH	kBq U235 eq	0,26	0,32	24%
Photochemical ozone formation	kg NMVOC eq	0,04	0,03	-22%
Acidification	molc H+ eq	0,22	0,20	-7%
Terrestrial eutrophication	molc N eq	0,93	0,87	-6%
Freshwater eutrophication	kg P eq	1,27E-03	1,53E-03	20%
Marine eutrophication	kg N eq	0,07	0,07	-1%
Freshwater ecotoxicity	CTUe	28,35	68,82	143%
Land use	kg C deficit	65,17	58,11	-11%
Water resource depletion	m3 water eq	0,03	0,02	-48%
Mineral, fossil & ren resource depletion	kg Sb eq	3,14E-04	7,37E-05	-77%

A livello europeo sono state individuate le seguenti categorie d'impatto ambientale quali maggiormente rilevanti per il cuoio: cambiamento climatico, acidificazione, eutrofizzazione terrestre, particolato, uso del suolo e consumo delle risorse fossili.

Questo comporta una maggiore incidenza delle suddette categorie sull'impatto complessivo del prodotto in questione. Variazioni, seppur rilevanti in termini relativi, di altre categorie d'impatto, avranno un'incidenza poco significativa in termini assoluti.

A conclusione, è importante sottolineare che le categorie d'impatto relative alla tossicità sono considerate, ad oggi, le meno robuste da un punto di vista scientifico.